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Heterosis, or hybrid vigor, is exploited by breeders to produce 
elite high-yielding crop lines, but beneficial phenotypes are 
lost in subsequent generations owing to genetic segregation. 
Clonal propagation through seeds would enable self-propaga-
tion of F1 hybrids. Here we report a strategy to enable clonal 
reproduction of F1 rice hybrids through seeds. We fixed the 
heterozygosity of F1 hybrid rice by multiplex CRISPR–Cas9 
genome editing of the REC8, PAIR1 and OSD1 meiotic genes 
to produce clonal diploid gametes and tetraploid seeds. Next, 
we demonstrated that editing the MATRILINEAL (MTL) gene 
(involved in fertilization) could induce formation of haploid 
seeds in hybrid rice. Finally, we combined fixation of hetero-
zygosity and haploid induction by simultaneous editing of all 
four genes (REC8, PAIR1, OSD1 and MTL) in hybrid rice and 
obtained plants that could propagate clonally through seeds. 
Application of our method may enable self-propagation of a 
broad range of elite F1 hybrid crops.

Hybrid offspring of genetically distant individuals have 
increased vigor relative to their homozygous parents owing to 
heterosis (also known as hybrid vigor). Heterosis has been widely 
applied in agriculture to improve the productivity and adaptabil-
ity of crops1,2. However, hybrid seed production is prohibitively 
expensive for many crops. Synthetic apomixes has been proposed 
as a way to fix the heterosis of F1 hybrid crop varieties3. Apomixis 
is an asexual reproductive strategy in which offspring are generated 
through seeds without meiosis or fertilization. Although it has been 
described in many flowering plant taxa4, apomixis has not been 
reported in crops. Combined mutations of three genes that mediate 
crucial meiotic processes create a genotype named MiMe (Mitosis 
instead of Meiosis) in which meiosis is replaced by a mitosis-like 
division, resulting in the production of male and female clonal dip-
loid gametes in Arabidopsis and rice (Oryza sativa)5,6. However, the 
self-fertilization of MiMe plants doubles the ploidy at each genera-
tion. Crossing Arabidopsis MiMe with a CENH3-mediated chromo-
some-elimination line produced clonal diploid offspring7. However, 
this system still relies on crossing different plants, and the CENH3-
mediated chromosome elimination seems unlikely to transfer to 
other species8. Therefore, we set out to devise a method for broadly 
applicable heterosis fixation in self-pollinated F1 hybrids.

First, to test the feasibility of MiMe technology in hybrid rice 
varieties, we chose ‘Chunyou84’ (CY84), an elite inter-subspe-
cific hybrid rice from a cross between the maternal Chunjiang 
16 A (16 A), a japonica male-sterile line, and the paternal C84, an  

indica-japonica intermediate-type line (Supplementary Fig. 1). To 
ensure rapid generation of MiMe in the hybrid CY84 background, 
we simultaneously edited the REC8, PAIR1 and OSD1 genes using 
our previously developed multiplex CRISPR–Cas9 system9 (Fig. 1a  
and Supplementary Table 1). Seven of 32 primary transformed 
plants were identified as frameshift triple mutants, and three of 
these were analyzed in detail (Supplementary Fig. 2a,b). The triple 
mutant (MiMe) could not be distinguished from the wild-type CY84 
on the basis of its growth or morphology (Supplementary Fig. 3). 
To test whether meiosis had been changed into a mitosis-like divi-
sion, we investigated male meiotic chromosome behavior in both 
wild-type and MiMe plants. In the wild-type CY84 (Supplementary  
Fig. 4a–f), 12 bivalents were scattered at diakinesis and aligned along 
the equatorial plate at metaphase I. The 12 pairs of homologous 
chromosomes separated at anaphase I and produced tetrads after 
the second meiotic division. In MiMe (Supplementary Fig. 4g–i),  
24 univalents were found at diakinesis and aligned at metaphase I. 
In anaphase I, 24 pairs of chromatids segregated into two groups 
and produced dyads, suggesting that the meiosis had been turned 
into a mitosis-like division. We next examined the ploidy of spores 
of MiMe by performing fluorescence in situ hybridization analy-
ses using a 5 S rDNA-specific probe, which identifies chromosome 
11 of rice. Only one signal was observed in CY84 spores (n =​ 30), 
whereas two signals were consistently observed in MiMe spores 
(n =​ 40, Fig. 1b), showing that diploid gametes were generated in 
MiMe. We also investigated the fertility of the MiMe mutant and 
found a seed-setting rate in MiMe of 81.2% (n =​ 4,043), which was 
comparable with that of the wild type (79.1%, n =​ 3,876) (Fig. 1c and 
Table 1), suggesting that simultaneous editing of these three genes 
did not obviously affect fertility in this hybrid variety. The ploidy 
of the progeny of the MiMe plant was investigated by flow cytom-
etry, and all (n =​ 123) were found to be tetraploid plants (Fig. 1d and 
Table 1). Furthermore, these progeny plants (n =​ 123) completely 
retained the heterozygosity of the CY84 parent for ten tested inser-
tion-deletion (indel) markers (Fig. 1e and Supplementary Table 2).  
The self-fertilized progeny of MiMe displayed reduced fertility, 
increased grain size and elongated awn length compared with the 
wild type, all of which are characteristics of tetraploid rice (Fig. 1f). 
These results show that the MiMe phenotype can be rapidly intro-
duced into hybrid rice varieties using the CRISPR–Cas9 genome-
editing technique.

MiMe clonal gametes participate in normal self-fertilization, giv-
ing rise to progeny with the doubled ploidy. This ploidy doubling 
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must be prevented to achieve apomixis. Recently, it was reported that 
mutation of the MATRILINEAL (MTL) gene (also known as NOT 
LIKE DAD and PHOSPHOLIPASE A1), which encodes a sperm-
specific phospholipase, triggers haploid induction in maize10–13. To 
test whether the homologous gene in rice could be manipulated to 

induce haploidy in self-fertilized hybrid rice, we edited the MTL 
gene in CY84 (Fig. 2a and Supplementary Table 1). Eleven of 32 
transformed plants were identified as having frameshift mutants, 
and three of them were analyzed (Supplementary Fig. 5a,b). The 
mtl mutants showed normal vegetative growth (Supplementary 
Fig. 3), but the seed-setting rate was reduced to 11.5% (n =​ 5,180; 
Fig. 2b and Table 1). Twelve indel markers (one per chromosome; 
Supplementary Table 2) that were polymorphic between the two 
parents were used to determine the genotype of the progeny of the 
mtl plants. In the progeny of wild-type CY84, no plants homozygous 
at all markers were found (n =​ 220; Table 1). In contrast, 11 plants 
from 248 mtl progeny appeared to be homozygous for all markers 
(Fig. 2c and Table 1). Flow cytometry showed that nine of these 
plants were indeed haploid, whereas two were diploid, presumably 
resulting from spontaneous doubling of haploid embryos (Fig. 2d 
and Table 1). To further classify the genotypes of these identified 
plants, the whole genomes of two haploids, two doubled haploids 
of mtl progeny and two offspring plants of wild-type CY84 were 
resequenced with 30-fold coverage. A total of 78,909 single nucle-
otide polymorphisms (SNPs) that differed between two parents 
were screened out for detailed genotype analysis. Whole-genome 
sequencing revealed that the haploids and doubled haploids were 
homozygous at all chromosomes (Fig. 2e) and recombinant com-
pared with the parental genome, suggesting that they were each 
derived from a single gamete. The haploid plants showed reduced 
plant height, decreased glume size and loss of fertility, whereas the 
doubled haploid plant displayed normal vegetative and panicle 
growth (Fig. 2f). The results demonstrate that recombinational hap-
loid plants can be generated by self-fertilization of hybrid varieties.

Since turning meiosis into mitosis and eliminating the paternal 
genome are both possible in self-fertilized F1 hybrid rice, we next 
tested the possibility of inducing heterozygosity fixation without 
additional crossing in hybrid rice by simultaneously editing four 
genes—namely, OSD1, PAIR1, REC8 and MTL—in CY84 (Fig. 3a,b). 
Out of 22 transgenic plants, 3 were identified by DNA sequencing 
as osd1 pair1 rec8 mtl quadruple mutants (named Fix, for Fixation 
of hybrids) and were used for further analysis (Supplementary  
Fig. 6a,b). The Fix mutants grew normally during the vegetative stage 
(Fig. 3c). During the reproductive stage, the male meiotic chromo-
some behavior was investigated and found to be indistinguishable 
from that of MiMe (Supplementary Fig. 4j–l). The seed-setting rate 
was 4.5% (n =​ 5,850) (Fig. 3c and Table 1), which was slightly lower 
than that of the mtl mutant. In the progeny seedlings, we investi-
gated the ploidy using flow cytometry. Among 145 progeny plants 
of Fix mutants, 136 were identified as tetraploid and 9 as diploid 
(Fig. 3d and Table 1). To investigate whether the heterozygosity was 
fixed in these diploid offspring, the genomes of two diploid and two 
tetraploid offspring plants of Fix were resequenced with an average 
of 30-fold coverage. Bioinformatic analysis using the 78,909 SNPs 
revealed that both the diploid and tetraploid progeny plants were 
genetically identical to the hybrid rice CY84 (Fig. 3e). Finally, we 
investigated the phenotype of the potential clonal plants of Fix. All 
these potential clones displayed similar plant morphology to the 
hybrid rice CY84, with normal vegetative growth, normal glume 
size and normal awn length (Fig. 3f), whereas the seed-setting rate 
of these plants (6.2%, n =​ 5,889) was greatly reduced compared with 
that of the wild-type controls (81.9%, n =​ 4,103), as was the case also 
for the parent Fix plants (Fig. 3c). Taking these results together, the 
diploid progeny of Fix plants displayed the same ploidy, the same 
heterozygous genotype, and a phenotype similar to that of the par-
ent Fix plants, implying that Fix is able to produce clonal seeds and 
fix the heterozygosity of F1 hybrid rice.

Our findings revealed that hybrids can be self-pollinated to pro-
duce true-breeding progeny through seeds by targeted editing of 
four endogenous genes in a rice F1 hybrid variety. Simultaneous edit-
ing of REC8, PAIR1 and OSD1 genes did not have obvious adverse 
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Fig. 1 | Turning meiosis into mitosis in hybrid rice variety CY84. a, The 
structure of CRISPR–Cas9 vector targeting OSD1, PAIR1 and REC8. b, The 
chromosomes of CY84 and MiMe were probed by digoxigenin-16-dUTP-
labeled 5 S rDNA (red signal, indicated with a white arrow) in spores, 
showing one signal in wild-type CY84 and two signals in MiMe. The DNA is 
stained with 4′​,6-diamidino-2-phenylindole (DAPI, blue signal). Scale bars, 
5 μ​m. c, Panicles of wild-type CY84 and MiMe. The fertility of MiMe was as 
high as that of wild-type CY84. Scale bars, 2 cm. d, Ploidy analysis of CY84 
(left) and the progeny of MiMe (right) by flow cytometry, which were found 
to be diploid and tetraploid, respectively (Table 1); PI, propidium iodide.  
e, Genotype analysis of the paternal C84, maternal Chunjiang 16 A (16 A), 
hybrid variety CY84 and the progeny siblings of MiMe. Ten indel markers 
distributed on chromosomes 1 and 8 were used to identify the genotype 
of the offspring of MiMe. Positions of markers (brown) and centromeres 
(black) are indicated along the chromosomes. For each marker, plants 
carrying the C84 allele are in red, plants carrying the 16 A allele are in 
blue, and plants with both C84 and 16 A alleles appear in yellow. Each 
row represents one plant, and each column indicates a locus. f, Panicles 
and grain shape of CY84 and the progeny of MiMe. The progeny of MiMe 
displayed reduced fertility, increased glume size and elongated awn length. 
Scale bars, 2 cm.
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effects on the growth and reproduction of the hybrid. By contrast, 
the MTL gene used to induce paternal genome elimination had neg-
ative effects on hybrid fertility and was not fully penetrant, effects 
that are consistent with the observations obtained from inbred 
varities14. Consequently, when the four genes were simultaneously 
mutated in hybrid rice by genome editing, the Fix plants displayed a 
similar reduced fertility. Although the fertility was reduced mainly 
because of the MTL mutation, the Fix plant was able to produce 
clonal seeds with the same ploidy and heterozygous genotype.

Improvements in fertility, such as by modifying the MTL gene 
or looking for different haploid-inducing genes, will be required to 
enable our technology to be commercialized for rice. However, our 

Fix strategy could be immediately applied to crop varieties in which 
fertility and seed production are less important, such as pasture and 
forage sorghum. Genome-editing technology is now available for a 
wide range of crops, and the genes that we targeted are conserved, 
so we anticipate that our method can readily be applied to crops in 
which generation of F1 hybrids is not currently commercially viable.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41587-018-0003-0.

Table 1 | Ploidy analysis of the progeny of CY84, MiMe, mtl and Fix

Genotype Plant 
No.

Seed-setting rate (filled 
grains/florets)

Progeny 
tested

Tetraploid Haploid +​ DH 
(haploid +​ DH/
progeny tested)

Diploid (clonal 
seeds/progeny 
tested)

Estimated frequency of 
clonal seeds

CY84 1 77.2% (1,151/1,490) 65 0 0 65

2 81.3% (951/1,170) 73 0 0 73

3 79.1% (962/1,216) 82 0 0 82

MiMe 7 81.9% (1,178/1,439) 35 35 0 0

8 79.2% (877/1,108) 43 43 0 0

21 82.1% (1,228/1,496) 45 45 0 0

mtl 1 9.1% (101/1,103) 77 0 6 +​ 0 (6/77 =​ 7.8%) 71

2 13.6% (217/1,601) 90 0 2 +​ 1 (3/90 =​ 3.3%) 87

3 11.3% (280/2,476) 81 0 1 +​ 1 (2/81 =​ 2.5%) 79

Fix 6 3.7% (63/1,725) 39 37 0 2 (2/39 =​ 5.1%) 5.1% ×​ 3.7% =​ 0.19%

10 5.2% (124/2,373) 64 61 0 3 (3/64 =​ 4.7%) 4.7% ×​ 5.2% =​ 0.24%

22 4.3% (76/1,752) 42 38 0 4 (4/42 =​ 9.5%) 9.5% ×​ 4.3% =​ 0.41%
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Methods
Plasmid construction. The plasmids expressing the CRISPR–Cas9 system were 
constructed via the isocaudamer ligation method, as previously described9. The 
modified single-guide RNAs (sgRNAs) scaffold and ACTIN1 promoter-driven Cas9 
were used to increase the mutation rate in this study15. Briefly, the double-stranded 
overhangs of target oligonucleotides (Supplementary Table 1) were ligated into 
the SK-sgRNA vectors digested with AarI. Then the sgRNAs for OSD1 (digested 
with KpnI and SalI), PAIR1 (digested with XhoI and BglII) and REC8 (digested 
with BamHI and NheI) were assembled into one pC1300-ACT:Cas9 binary vector 
(digested with KpnI and XbaI), using T4 ligase, to obtain the vector pC1300-
ACT:Cas9-sgRNAOSD1-sgRNAPAIR1-sgRNAREC8 for generation of MiMe. The sgRNA 
for MTL (digested with KpnI and NheI) was assembled into the pC1300-ACT:Cas9 
binary vector (digested with KpnI and XbaI) to obtain the vector pC1300-
ACT:Cas9-sgRNAMTL for generation of mtl. The sgRNA of MTL (digested with 
KpnI and NheI) was assembled into the pC1300-ACT:Cas9-sgRNAOSD1-sgRNAPAIR1-
sgRNAREC8 vector (digested with KpnI and XbaI) to obtain the vector pC1300-
ACT:Cas9-sgRNAOSD1-sgRNAPAIR1-sgRNAREC8-sgRNAMTL for generation of Fix.

Rice transformation and growth conditions. The hybrid rice ‘Chunyou 84’ 
(CY84) was used as the host variety in this study. The generation of transgenic 
rice, by Agrobacterium-mediated transformation with the strain EHA105, was 
performed by Hangzhou Biogle Co., Ltd (Hangzhou, China). In summer, the plants 
were grown in the transgenic paddy fields of the China National Rice Research 
Institute in Hangzhou, China. In winter, the plants were grown in a greenhouse 
maintained at average day and night temperatures of 34 and 25 °C, respectively, 
12-h light/12-h dark cycles, and 75% relative humidity.

Detection of genome modifications. Genomic DNA was extracted from 
approximately 100 mg rice leaf tissue via the cetyltrimethylammonium bromide 
(CTAB) method. PCR was conducted with KOD FX DNA Polymerase (Toyobo, 
Osaka, Japan) to amplify the genomic regions surrounding the target sites. The 
primers are listed in Supplementary Table 2. The fragments were sequenced by the 
Sanger method and decoded by the degenerate sequence decoding method16. The 
Sanger sequences of the analyzed mutants are listed in Supplementary Figs. 2b, 5b 
and 6b, respectively.

Cytological analyses. Young rice panicles at meiosis stage were harvested and fixed 
in Carnoy’s solution (ethanol:glacial acetic acid, 3:1). Microsporocytes undergoing 
meiosis were squashed in an acetocarmine solution. Slides were frozen in liquid 
nitrogen, and the coverslips were removed rapidly with a blade. Chromosomes 
were counterstained with 4′​,6-diamidino-2-phenylindole (DAPI) in an antifade 
solution (Vector Laboratories, Burlingame, CA, USA). Microscopy was conducted 
using an Olympus BX61 fluorescence microscope fitted with a micro charge-
coupled device camera.

Fluorescence in situ hybridization analysis was conducted as described 
previously17. The plasmid pTa794 was used as the probe to quantify the 5 S rDNA.

Genotyping with indel markers. Insertion-deletion (indel) markers to distinguish 
between heterozygous and homozygous genotypes were designed on the basis 
of the whole-genome sequences of C84 and 16 A. The primers are listed in 
Supplementary Table 2. The genotyping was performed by a standard PCR 
program using 2 ×​ Taq Master Mix (Novoprotein Scientific, China), and the PCR 
products were detected by electrophoresis on 5% agarose gels.

Flow cytometry determination of DNA content in leaf cell nuclei. The ploidy of 
leaf cells was determined by estimating nuclear DNA content using flow cytometry. 
All procedures were done at 4 °C or on ice. Approximately 2 cm2 leaf tissue was 
chopped using a new razor blade for 2 to 3 min in 1 mL LB01 buffer (15 mM Tris, 
2 mM disodium EDTA, 0.5 mM spermine tetrahydrochloride, 80 mM KCl, 20 mM 

NaCl, 0.1% (v/v) Triton X-100, 15 mM β​-mercaptoethanol, pH 7.5, filtered through 
a 0.22-μ​m filter). The homogenate was filtered through a 40-μ​m nylon filter 
followed by centrifugation (135g, 5 min) to collect the nuclei. The supernatant was 
discarded, and the pellet was resuspended in 450 μ​L fresh LB01 buffer. Then 25 μ​L  
1 mg/mL propidium iodide (PI, Sigma P4170) and 25 μ​L 1 mg/mL DNase-free 
RNase A (Sigma V900498) were added to stain the DNA. The stained samples were 
incubated on ice in darkness for 10 min before analysis. The samples were analyzed 
using a BD Accuri C6 flow cytometer with laser illumination at 552 nm and a 
610/20 nm filter. The gating strategy is provided in the Supplementary  
Data 1. Samples with the same result as CY84 were deemed to be diploids, with the 
first peak of relative fluorescence at ~100 ( ×​ 10,000). Samples with the first peak 
of relative fluorescence at ~50 ( ×​ 10,000) were deemed to be haploids, whereas 
samples with the first peak of relative fluorescence at ~200 ( ×​ 10,000) were deemed 
to be tetraploids.

Whole-genome resequencing and genotype calling. The 150-bp paired-end 
reads were generated by Illumina Hiseq2500 at an average depth of approximately 
30-fold coverage for each sample. The raw paired-end reads were first filtered 
to create clean data using NGSQCtoolkit v2.3.318. The cutoff value for PHRED 
quality score was set to 20. Clean reads of each accession were aligned against the 
rice reference genome (IRGSP 1.0) using the software SOAPaligner (soap version 
2.21)19 with parameters “-m 200 -x 1000 -l 35 -s 42 -v 5” and “--p 8”. To obtain 
high-quality SNPs, reads that could be mapped to different genomic positions 
were excluded by SOAPsnp20. Uniquely mapped single-end and paired-end results 
were used in SNP calling. Genotype calling was carried out on the whole genome 
using these SNPs, which were heterozygous in the parent. The window size (the 
number of consecutive SNPs in a window) was 0.1 K, and a recombination map 
was constructed for each chromosome.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available in the article and its 
supplementary figures and tables or are available from the corresponding author on 
request. For sequence data, rice LOC_Os identifiers (http://rice.plantbiology.msu.
edu/): LOC_Os02g37850 (OSD1), LOC_Os03g01590 (PAIR1), LOC_Os05g50410 
(REC8) and LOC_Os03g27610 (MTL). Whole-genome sequencing data are 
deposited in the NCBI Sequence Read Archive with accession codes SRP149641 
and SRP149677.
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Data collection A Perl  script (v5.16.3) was used to analysis the SNP data.

Data analysis NGSQCtookit v2.3.3, SOAPaligner ( soap version 2.21), SOAPsnp were used to analyze the whole genome sequencing data.
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Whole genome sequencing data are deposited in the NCBI Sequence Read Archive (SRP149641 and SRP149677 ).
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Sample size Three individual genome-edited rice plants were chosen in each experiment. Between four and six panicles of each plant were chosen to 
analyse the seed-setting rate. No statistical tests were used to determine the sample size.

Data exclusions No data was excluded.

Replication All attempts at replications were successful.

Randomization Progenies tested for each plant were chosen at random.

Blinding Not applicable. This is not relevant to biochemical/cell biology studies and samples were not blinded.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation All procedures were done at 4 °C or on ice. Approximately 2 cm2 leaf tissue was chopped using a new razor blade for 2 to 3 min 
in 1 mL LB01 buffer. The homogenate was filtered through a 40 μm nylon filter followed by centrifugation (1200 × rpm, 5 min) to 
collect the nuclei. The supernatant was discarded, and the pellet was resuspended in 450 μL fresh LB01 buffer, then 25 μL 1 mg/
mL propidium iodide and 25 μL 1 mg/mL DNase-free RNase A  were added to stain the DNA. The stained samples were incubated 
on ice in darkness for 10 min prior to analysis.

Instrument BD Accuri C6 flow cytometer, with the laser illumination at 552 nm and a 610/20 nm filter.

Software BD Accuri C6 software

Cell population abundance The rice leaf nuclei were used to determine the ploidy level. In this ploidy analysis experiment, cell sorting and purification steps 
were not involved. After filtration, cells in the suspension were used to perform the experimental procedures.

Gating strategy See the examples provided for gates used in the Supplementary Information. A negative control was used to establish gate P1 to 
eliminate irrelevant debris. CY84 was used as the diploid template. The single nuclei were enclosed by polygonal region P2.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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