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Abstract

Background: A landmark in soybean research, Glyma1.01, the first whole genome sequence of variety Williams 82
(Glycine max L. Merr.) was completed in 2010 and is widely used. However, because the assembly was primarily
built based on the linkage maps constructed with a limited number of markers and recombinant inbred lines (RILs),
the assembled sequence, especially in some genomic regions with sparse numbers of anchoring markers, needs to
be improved. Molecular markers are being used by researchers in the soybean community, however, with the
updating of the Glyma1.01 build based on the high-resolution linkage maps resulting from this research, the
genome positions of these markers need to be mapped.

Results: Two high density genetic linkage maps were constructed based on 21,478 single nucleotide
polymorphism loci mapped in the Williams 82 x G. soja (Sieb. & Zucc.) PI479752 population with 1083 RILs and
11,922 loci mapped in the Essex x Williams 82 population with 922 RILs. There were 37 regions or single markers
where marker order in the two populations was in agreement but was not consistent with the physical position in
the Glyma1.01 build. In addition, 28 previously unanchored scaffolds were positioned. Map data were used to
identify false joins in the Glyma1.01 assembly and the corresponding scaffolds were broken and reassembled to the
new assembly, Wm82.a2.v1. Based upon the plots of the genetic on physical distance of the loci, the euchromatic
and heterochromatic regions along each chromosome in the new assembly were delimited. Genomic positions of
the commonly used markers contained in BARCSOYSSR_1.0 database and the SoySNP50K BeadChip were updated
based upon the Wm82.a2.v1 assembly.

Conclusions: The information will facilitate the study of recombination hot spots in the soybean genome,
identification of genes or quantitative trait loci controlling yield, seed quality and resistance to biotic or abiotic
stresses as well as other genetic or genomic research.

Keywords: Soybean, Wm82.a2.v1 assembly, BARCSOYSSR_1.0 database, SoySNP50K BeadChip, euchromatic and
heterochromatic regions, linkage map

Background
As a tool for genetic research and breeding, genetic link-
age maps have been widely used to discover the position
and to clone genes controlling biotic and abiotic stress
resistance, agronomic and seed quality traits and to fa-
cilitate marker-assisted selection of the traits with low

heritability and/or high phenotyping cost. In soybean,
the first molecular genetic linkage map was reported in
1990 [1]. The map contained 150 restriction fragment
length polymorphism (RFLP) markers that were mapped
using an F2 population with 60 progeny derived from a
cross of A81-356022 (G. max) × PI468916 (G. soja). Sub-
sequently, a map with 130 RFLPs was constructed based
on an F2 population with 69 progeny from a cross of
Minsoy × Noir 1 [2], and a map with 165 RFLPs, 25 ran-* Correspondence: Qijian.song@ars.usda.gov
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dom amplified polymorphic DNA (RAPD) markers and
650 amplified fragment length polymorphisms (AFLPs)
based on 300 recombinant inbred lines (RILs) from
PI437654 × BSR101 [3] were reported. The early genetic
linkage maps were primarily based on RFLP or AFLP
markers and due to the lack of polymorphism or the
complexity of the multiple banding patterns with these
markers, simple sequence repeat (SSR) or microsatellite
markers were proposed and then evaluated for the con-
struction of genetic linkage maps [4, 5]. Cregan et al.
(1999) [6] developed three separate linkage maps con-
taining a total of 1421 markers including 606 SSRs, 689
RFLPs, 79 RAPDs and 47 other markers. These markers
were mapped using three RIL populations: the Minsoy ×
Noir 1 population with 240 RILs, the A81-356022 ×
PI468916 population with 57 F2 plants, and the
Clark × Harosoy population with 59 F2 plants and re-
sulted in 20 linkage groups which were assumed to
correspond to the 20 pairs of soybean chromosomes.
Song et al. (2004) [7] constructed an integrated soy-
bean linkage map using the three mapping popula-
tions used by Cregan et al. (1999) [6] as well as two
additional mapping populations from Minsoy × Archer
with 233 RILs, and Archer × Noir 1 with 240 RILs.
The consensus map contained 1849 markers including
1015 SSRs, 709 RFLPs, 73 RAPDs and 52 other
markers [7]. As large numbers of expressed sequence
tags (ESTs) and genomic sequence became available
in later years, Choi et al. (2007) [8] discovered >5500
single nucleotide polymorphism (SNP) markers by
comparing DNA sequences acquired from a set of di-
verse genotypes after PCR amplification and sequence
analysis of the EST or genomic sequences. A total of
1141 of the 5500 SNPs were mapped using three
mapping populations including the Minsoy × Noir 1
with 164 RILs, Minsoy × Archer with 89 RILs as well
as the Evans × PI 209332 with75 RILs [8]. Hyten et al.
(2010) [9] added 2651 additional SNPs to the linkage
maps created by Choi et al. (2007) [8] using the same
Minsoy × Noir 1, Minsoy × Archer and Evans × Peking
populations [9]. All of the molecular markers on these
linkage maps were developed before the soybean whole
genome sequence was available, thus, the markers were
not evenly distributed and did not sufficiently cover all of
the genomic regions of the soybean genome with a total
sequence length >1100 Mb [10].
The Williams 82 Glyma1.01 whole genome sequence

was completed and published in 2010 [11]. The genome
sequence is widely used for the study of gene structure
[12–14], syntenic relationships among legume species
[15–18], identification of genes [19–22], the develop-
ment of additional molecular markers and for other
uses. Song et al. (2013) [23] identified 209,903 SNPs by
mapping short reads from each of eight soybean

accessions which included six cultivated (Glycine max
(L.) Merr.) and two wild soybean (G. soja Sieb. & Zucc.)
genotypes and selected 60,800 SNPs for the design of the
SoySNP50K Illumina Infinium BeadChip [23]. The Bead-
Chip has been successfully used to genotype the entire
USDA Soybean Germplasm Collection containing 19,652
accessions including 1168 wild and 18,484 cultivated soy-
bean accessions [24], the dataset is available at Soybase,
the USDA, ARS Soybean Genetics and Genomics Data-
base, http://www.soybase.org/snps/download.php) and is
being used for genome-wide association analysis [25–29],
quantitative trait loci (QTL) analysis [26], genetic diversity
analysis and the identification of regions associated with
domestication and selection imposed by modern breeding.
In addition, Song et al. (2010) [30] identified a total of
210,990 SSRs with di-, tri-, and tetranucleotide repeats of
five or more in the soybean whole genome sequence
which included 61,458 SSRs consisting of repeat units of
di- (≥10), tri- (≥8), and tetranucleotide (≥7), and developed
a database (BARCSOYSSR_1.0) of locus-specific SSR
markers with a high likelihood of polymorphism. A
database with the primer sequences and their genome
positions for 33,065 SSRs in the Glyma1.01 assembly
was created [30]. The database also included the
physical positions of 3322 SNPs in the Glyma1.01
build, which were mapped by Hyten et al. (2010) [9].
These molecular markers plus the markers developed
previously [6–9, 31–35] are being used by researchers
in the soybean community. However, with the updating of
the Glyma1.01 build based on the high-resolution linkage
maps resulting from this research, the genome positions
of these markers need to be redefined.
The Glyma1.01 build captured approximately 975 Mb

of sequence across the 20 chromosomes. The Glyma1.01
whole genome sequence contained 236 unanchored scaf-
folds with lengths ranging from 10 to 100 kb and 51 un-
anchored scaffolds with lengths greater than 100 kb. The
assembly was basically built based on the integrated link-
age maps [7, 9] and a genetic map with additional
markers specifically selected to aid in the pseudomole-
cule assembly [36]. However, the marker density on any
one of these linkage maps was still insufficient to fully
cover all regions of the soybean genome. In addition, the
number of RILs genotyped for the construction of the
previous linkage maps was relatively small (60–240 RILs)
[7, 9]. These deficiencies may result in low resolution,
large gaps, and incorrect marker order in the linkage
maps, and in turn, may cause incorrect orientation or
misplacement of scaffolds in the Glyma1.0 whole gen-
ome sequence assembly of soybean.
The objectives of this research were to construct high

resolution linkage maps using large mapping popula-
tions, to identify misplaced or incorrectly orientated
genomic regions, to anchor additional scaffolds in the
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Glyma1.01 assembly, and to position SSR and SNP
markers in the Wm82.a2.v1assembly.

Results
Construction of high resolution linkage maps
A total of 23,814 SNPs were polymorphic among
1083 RILs in the Williams 82 x PI479752 (WP) and
17,150 SNPs among the 922 RILs in the Essex x
Williams 82 (EW) population. After elimination of
SNPs with missing >10 % or segregation distortion
significant at the 1 % level based on χ2 tests, 21,478,
11,922 and 27,431 SNPs were mapped in the WP, EW
and WP + EW populations, respectively. The number
of mapped SNPs in each linkage group ranged from
825 to 1910 in the WP, 132–1313 in the EW and
938–2481 in the WP + EW populations. The total
genetic linkage map distance was 2445.8 cM in the
WP and 2647.6 cM in the EW population (Table 1
and Additional file 1: Table S1).

Identification of misassembled genomic regions or
anchorable scaffolds in Glyma1.01
Of the 21,478 SNPs mapped in WP and 11,922 in EW,
5969 SNPs were present in both populations and the

number of common SNPs per chromosome ranged from
67 on chromosome Gm14 to 742 on chromosome
Gm18. Marker order on the genetic linkage maps was
used to identify major genomic regions of the Glyma1.01
that required reorientation and/or re-positioning. Ana-
lysis showed that the order of the common markers on
the two linkage maps was highly consistent and the
order of the SNPs was generally consistent with their
physical positions along the corresponding chromo-
somes of Glyma1.01 (Additional file 2: Figure S1). How-
ever, there were 22 regions or single markers that
required re-positioning or reorientation based upon
marker orders supported by both the WP and EW map-
ping data (Table 2). In these regions, the SNP markers
had consistent order along the linkage maps in both
mapping populations but their order was not consistent
with physical position in Glyma1.01. For example, there
were regions on Gm04, Gm05, Gm10 and Gm13 where
the order of SNPs on both linkage maps was identical,
but the order of those SNPs in the Glyma1.01 assembly
was reversed (Additional file 2: Figure S1). In addition, a
number of individual markers or sets of markers identi-
fied sequence that was placed on the wrong chromo-
some (Table 2). There were a total of 15 regions that

Table 1 Number of SNPs mapped to each linkage group, linkage group length based on the Williams 82 × PI479752 (WP) and the
Essex × Williams 82 (EW) populations and the number of SNPs common to the two populations and SNPs unique to one population

Linkage
Group

WP EW Number of SNPs common to
theWP and EWpopulations

Number of
unique SNPsNumber of SNPs Length (cM) Number of SNPs Length (cM)

Gm01 591 107.9 486 121.4 115 962

Gm02 1325 132.2 821 168.1 468 1678

Gm03 842 113.3 472 128.4 203 1111

Gm04 1185 112.1 616 143.2 349 1452

Gm05 1128 121.5 507 127.4 293 1342

Gm06 980 162.0 629 158.8 256 1353

Gm07 1159 136.2 376 146.1 223 1312

Gm08 965 177.7 636 128.3 107 1494

Gm09 997 134.1 736 132.0 374 1359

Gm10 1207 144.0 733 145.9 390 1550

Gm11 825 97.8 262 146.2 149 938

Gm12 938 106.6 383 127.0 213 1108

Gm13 1458 131.5 737 153.3 371 1824

Gm14 873 102.8 132 70.1 67 938

Gm15 1309 110.8 923 131.2 523 1709

Gm16 954 98.1 392 99.5 208 1138

Gm17 1037 129.3 490 115.2 284 1243

Gm18 1910 107.2 1313 126.4 742 2481

Gm19 953 109.0 936 125.5 414 1475

Gm20 842 111.7 342 153.6 220 964

Total 21478 2445.8 11922 2647.6 5969 27431
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Table 2 Regions or single markers in Glyma1.01 that required re-positioning or reorientation based upon marker orders supported by both or either the W82 x PI79752 and/or
the Essex x W82 mapping data

First marker in the interval Last marker in the interval Comment Supporting
map dataSNP ID Chromosome Physical position SNP ID Chromosome Physical position

BARC_1.01_Gm02_22523407_T_C Gm02 22,523,407 BARC_1.01_Gm02_22917212_A_G Gm02 22,917,212 Move to Gm15 WP and EW

BARC_1.01_Gm02_26182810_A_G Gm02 26,182,810 BARC_1.01_Gm02_27329992_A_G Gm02 27,329,992 Move to Gm13 WP and EW

BARC_1.01_Gm02_43000450_C_T Gm02 43,000,450 BARC_1.01_Gm02_43043202_A_C Gm02 43,043,202 Re-orient WP and EW

BARC_1.01_Gm03_5530681_A_G Gm03 5530681 BARC_1.01_Gm03_6597027_G_A Gm03 6597027 Re-orient WP and EW

BARC_1.01_Gm04_29510350_C_A Gm04 29,510,350 BARC_1.01_Gm04_29566738_A_G Gm04 29,566,738 Re-orient and move to Gm18 WP and EW

BARC_1.01_Gm05_8031928_A_C Gm05 8,031,928 BARC_1.01_Gm05_9066302_T_C Gm05 9,066,302 Move to top of chromosome WP and EW

BARC_1.01_Gm05_9616597_C_T Gm05 9,616,597 BARC_1.01_Gm05_16324558_C_T Gm05 16,324,558 Re-orient WP and EW

BARC_1.01_Gm05_16504006_C_T Gm05 16504006 BARC_1.01_Gm05_20385655_G_T Gm05 20385655 Re-orient WP and EW

BARC_1.01_Gm05_38634602_T_C Gm05 38,634,602 BARC_1.01_Gm05_41919487_G_T Gm05 41,919,487 Re-orient WP and EW

BARC_1.01_Gm07_10457480_C_A Gm07 10,457,480 BARC_1.01_Gm07_14773717_G_T Gm07 14,773,717 Re-orient WP and EW

BARC_1.01_Gm09_37436031_A_C Gm09 37,436,031 BARC_1.01_Gm09_37478410_A_G Gm09 37,478,410 Re-orient WP and EW

BARC_1.01_Gm10_14435077_T_C Gm10 14,435,077 BARC_1.01_Gm10_27968025_A_C Gm10 27,968,025 Re-orient WP and EW

BARC_1.01_Gm11_37808033_A_G Gm11 37,808,033 BARC_1.01_Gm11_39163663_A_G Gm11 39,163,663 Re-orient WP and EW

BARC_1.01_Gm12_18007551_G_T Gm12 18,007,551 BARC_1.01_Gm12_18239449_G_A Gm12 18,239,449 Move to Gm04 WP and EW

BARC_1.01_Gm13_5491_A_G Gm13 5,491 BARC_1.01_Gm13_20223181_A_G Gm13 20,223,181 Re-orient WP and EW

BARC_1.01_Gm13_35242360_T_C Gm13 35,242,360 BARC_1.01_Gm13_35307167_A_G Gm13 35,307,167 Move to Gm09 WP and EW

BARC_1.01_Gm15_10351491_G_T Gm15 10,351,491 BARC_1.01_Gm15_10427384_A_G Gm15 10,427,384 Move and Re-orient WP and EW

BARC_1.01_Gm15_36006344_T_C Gm15 36,006,344 BARC_1.01_Gm15_38303424_T_C Gm15 38,303,424 Move and Re-orient WP and EW

BARC_1.01_Gm17_9749711_A_G Gm17 9,749,711 Move to Gm10 WP and EW

BARC_1.01_Gm18_24754213_G_T Gm18 24,754,213 BARC_1.01_Gm18_27432506_A_G Gm18 27,432,506 Move to Gm04 WP and EW

BARC_1.01_Gm19_12811558_G_A Gm19 12811558 BARC_1.01_Gm19_17460363_C_A Gm19 17460363 Re-orient WP and EW

BARC_1.01_Gm20_10352781_A_G Gm20 10,352,781 BARC_1.01_Gm20_19781743_T_C Gm20 19,781,743 A number of changes needed WP and EW

BARC_1.01_Gm01_16580419_T_G Gm01 16580419 BARC_1.01_Gm01_17671586_G_A Gm01 17671586 Re-orient WP

BARC_1.01_Gm02_27407299_A_G Gm02 27407299 BARC_1.01_Gm02_29498377_C_T Gm02 29498377 Re-orient WP

BARC_1.01_Gm03_16199297_C_T Gm03 16199297 BARC_1.01_Gm03_22901336_G_T Gm03 22901336 Re-orient WP

BARC_1.01_Gm04_34743951_T_C Gm04 34743951 BARC_1.01_Gm04_33785067_T_C Gm04 33785067 Move to Gm20 WP

BARC_1.01_Gm05_30871172_T_C Gm05 30871172 BARC_1.01_Gm05_30910003_G_A Gm05 30910003 Move to Gm11 WP

BARC_1.01_Gm08_44242727_C_T Gm08 44242727 BARC_1.01_Gm08_44632488_A_G Gm08 44632488 Re-orient WP

BARC_1.01_Gm10_42894189_C_T Gm10 42894189 BARC_1.01_Gm10_43004105_A_C Gm10 43004105 Re-orient WP

BARC_1.01_Gm13_34645498_A_G Gm13 34645498 BARC_1.01_Gm13_34658945_C_A Gm13 34658945 Re-orient EW

BARC_1.01_Gm14_48713607_A_G Gm14 48713607 BARC_1.01_Gm14_48755126_G_A Gm14 48755126 Re-orient WP
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Table 2 Regions or single markers in Glyma1.01 that required re-positioning or reorientation based upon marker orders supported by both or either the W82 x PI79752 and/or
the Essex x W82 mapping data (Continued)

BARC_1.01_Gm15_25823658_T_C Gm15 25823658 BARC_1.01_Gm15_36378430_A_G Gm15 36378430 Re-orient EW

BARC_1.01_Gm16_5856598_G_A Gm16 5856598 BARC_1.01_Gm16_5887676_G_A Gm16 5887676 Re-orient WP

BARC_1.01_Gm16_17407537_T_G Gm16 17407537 BARC_1.01_Gm16_22593496_G_A Gm16 22593496 Re-orient WP

BARC_1.01_Gm19_3021_T_C Gm19 3021 BARC_1.01_Gm19_567731_A_G Gm19 567731 Re-orient WP

BARC_1.01_Gm20_7082863_T_G Gm20 7082863 BARC_1.01_Gm20_7419439_G_A Gm20 7419439 Re-orient WP

BARC_1.01_Gm20_18531300_T_C Gm20 18531300 BARC_1.01_Gm20_7419439_G_A Gm20 20977430 Re-orient WP
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required re-positioning or reorientation based upon
marker orders available from either the WP or EW map-
ping data (Table 2). In addition, 28 unanchored scaffolds
with a total length of 3.6 Mb in Glyma1.01 were an-
chored as a result of markers in either the WP or EW
map, or both, that defined the scaffold genome position
(Table 3).

The Wm82.a2.v1 assembly
Based on the two dense linkage maps and additional
analyses, sequence breaks from Glyma1.01 were identi-
fied and reassembled. The new build of the 20 chromo-
somes captured 949.2 Mb. The total sequence including
the 1170 unmapped scaffolds was 978.5 Mb. The plots
of the genetic on physical distance of the SNPs in
Glyma1.01 and Wm82.a2.v1 showed that major regions,
such as on Gm05 and Gm13 with an inconsistent order
of SNPs on linkage maps vs. physical position in the
Glyma1.01 build were corrected in the Wm82.a2.v1 as-
sembly (Additional file 3: Figure S2). Further comparison
of the physical positions of the SNPs in Glyma1.01 vs.
Wm82.a2.v1 showed that sequence assembly errors in
the regions indicated in Table 2 and Table 3 were all cor-
rected in Wm82.a2.v1 (Additional file 1: Table S1). In
addition, a total of 28 scaffolds with mapped SNP
markers were anchored to the new build. The new as-
sembly which is completed at the Department of Energy,
Joint Genome Institute is available at http://www.phyto-
zome.jgi.doe.gov/pz/portal.html.
Based upon the plots of genetic distance on physical

distance of the SNPs in Wm82.a2.v1 and mapped in ei-
ther the WP or EW population, the regions with high
and low recombination rate were defined. These plots
allowed the delimitation of the approximate positions of
euchromatic and heterochromatic regions along each
chromosome (Table 4). The two regions covered ap-
proximately 43 % and 47 % of the total estimated gen-
ome sequence, respectively.

Positions of commonly used markers in the Wm82.a2.v1
assembly
Of the 33,065 SSRs and 3322 SNPs in the BARC-
SOYSSR_1.0 database, 32,602 SSRs and 3314 SNPs were
unambiguously positioned in the Wm82.a2.v1 assembly.
A total of 2122 SNPs and 7092 SSRs were in the genes
defined in Wm82.a2.v1 and the total number of unique
genes in which these SSR and SNP markers resided was
7686 (Additional file 4: Table S2).
Among the 60,800 SNPs originally selected for inclu-

sion in the SoySNP50K BeadChip [23], 60,556 SNPs
were positioned in the new assembly and a total of
20,271 SNPs were in 14,880 different genes. The posi-
tions of 244 SNPs in the Wm82.a2.v1 assembly could
not be determined (Additional file 1: Table S1).

Discussion
The two linkage maps created in this study have the
highest density of markers and are based on the largest
number of recombinant inbred lines that have been re-
ported in soybean to date. Simulation studies indicated
that a low number of RILs in a population frequently
caused inversions of marker order and breakage in link-
age groups and that the precision of the maps is highly
dependent on the number of RILs [37]. For the purpose
of integrating large numbers of markers into a linkage
map, the WP population which was derived from the
cross of cultivated by wild soybean accessions was devel-
oped. The large genetic divergence between the two sub-
species allowed us to identify and map large numbers of
SNPs in a single population. One concern with the link-
age maps from G. max x G. soja was the possibility of
paracentric inversions and reciprocal translocations be-
tween the cultivated soybean and certain wild soybean
accessions [38, 39]. However, we did not observe such
regions in the linkage maps of WP based on the order of
approximately 6000 common SNPs mapped in both the
WP and EW populations.
Besides the number of markers and size of the RIL

populations, utilization of evenly distributed markers
across the whole soybean genome was also essential to
ensure maps with high resolution. The SNPs in the
SoySNP50K BeadChip were carefully selected in order
to equalize the distance between selected SNPs in the
euchromatic and heterochromatic regions along each
chromosome and the BeadChip was able to generate
high quality genotyping data [23]. The resulting two
linkage maps had better coverage and higher resolution
than any other soybean linkage maps reported previ-
ously. The high quality of the two linkage maps is sup-
ported by the very consistent order of the common
markers in the two maps.
Even though the Glyma1.01 build was well con-

structed, we identified regions where the marker physical
order was inconsistent with the WP and EW linkage
maps. Most of these regions either had insufficient
marker numbers or lacked markers with recombination
in the previous linkage maps [7, 9, 36] on which the
Glyma1.01 assembly was based. The misassembled or
improperly oriented regions identified by our linkage
maps covered all of the major regions reported by Lee et
al. (2013) [40] and the regions were moved or re-
assembled in the Wm82.a2.v1 assembly. Of course, re-
finement of some regions may still be required especially
in the heterochromatic regions where limited recombin-
ation was observed.
In order to determine the approximate positions of the

euchromatic and heterochromatic regions of the gen-
ome, the cumulative genetic distances (cM) were plotted
against their corresponding cumulative physical distance
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Table 3 Twenty-eight previously unanchored scaffolds for which there were markers in either the Williams 82 × PI479752 (WP) or the Essex ×Williams 82 (EW) map, or both, to
define their genome position

SNP ID Scaffold Physical Position of
SNP in the scaffold

LG based on WP
population

Position based on WP
population (cM)

LG_based on EW
population

Position based on EW
population (cM)

Total scaffold
length

BARC_1.01_scaffold_1036_3469_T_C scaffold_1036 3469 8 117.851 5173

BARC_1.01_scaffold_1448_1683_A_C scaffold_1448 1683 17 80.252 3995

BARC_1.01_scaffold_1448_67_G_A scaffold_1448 67 17 80.252

BARC_1.01_scaffold_1454_1730_G_A scaffold_1454 1730 1 87.464 3982

BARC_1.01_scaffold_1484_809_T_C scaffold_1484 809 10 57.485 4368

BARC_1.01_scaffold_1605_1791_T_C scaffold_1605 1791 9 82.196 9 80.192 3584

BARC_1.01_scaffold_169_21520_G_A scaffold_169 21520 11 90.373 25752

BARC_1.01_scaffold_169_9083_G_T scaffold_169 9083 11 90.373

BARC_1.01_scaffold_2048_399_C_A scaffold_2048 399 16 69.671 1779

BARC_1.01_scaffold_2182_1012_T_C scaffold_2182 1012 13 92.688 13 134.477 1349

BARC_1.01_scaffold_22_540761_G_A scaffold_22 540761 8 120.532 1088050

BARC_1.01_scaffold_22_985719_G_A scaffold_22 985719 8 120.532

BARC_1.01_scaffold_2280_754_G_A scaffold_2280 754 18 69.307 1018

BARC_1.01_scaffold_23_881897_T_C scaffold_23 881897 1 46.789 939397

BARC_1.01_scaffold_24_197620_T_C scaffold_24 197620 10 52.909 634454

BARC_1.01_scaffold_245_10767_A_G scaffold_245 10767 11 87.989 17525

BARC_1.01_scaffold_248_8179_A_G scaffold_248 8179 7 12.253 17311

BARC_1.01_scaffold_303_12268_T_G scaffold_303 12268 3 28.82 17325

BARC_1.01_scaffold_317_4132_A_G scaffold_317 4132 9 101.035 14271

BARC_1.01_scaffold_36_219042_G_A scaffold_36 219042 2 75.178 2 97.615 280716

BARC_1.01_scaffold_469_2885_C_T scaffold_469 2885 1 55.543 10200

BARC_1.01_scaffold_476_2115_T_C scaffold_476 2115 9 57.081 9 48.989 10120

BARC_1.01_scaffold_476_9307_A_C scaffold_476 9307 9 57.118 9 49.034

BARC_1.01_scaffold_48_40550_T_C scaffold_48 40550 9 134.091 139886

BARC_1.01_scaffold_554_3651_G_A scaffold_554 3651 16 99.322 9124

BARC_1.01_scaffold_66_159931_A_G scaffold_66 159931 9 60.405 9 54.911 170827

BARC_1.01_scaffold_732_107_A_G scaffold_732 107 18 63.953 6997

BARC_1.01_scaffold_825_3928_G_T scaffold_825 3928 2 75.353 6293
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Table 3 Twenty-eight previously unanchored scaffolds for which there were markers in either the Williams 82 × PI479752 (WP) or the Essex ×Williams 82 (EW) map, or both, to
define their genome position (Continued)

BARC_1.01_scaffold_84_64248_T_C scaffold_84 64248 10 52.937 69299

BARC_1.01_scaffold_91_31407_G_A scaffold_91 31407 9 58.919 9 51.365 63120

BARC_1.01_scaffold_938_1798_A_G scaffold_938 1798 15 83.907 15 102.19 6175

BARC_1.01_scaffold_97_54858_G_A scaffold_97 54858 9 58.919 57671

Total length of newly anchored scaffolds 3609761
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(Mbp) via the mapped SNP loci positions on the genetic
linkage map and their genome sequence position along
each chromosome. The region between the two inflec-
tion points of the cumulative genetic distance against
cumulative physical distance on the plot was defined as
the heterochromatic region [23]. The reliability of defin-
ing heterochromatic regions using this method was vali-
dated by the conventional 4,6-diamidino-2-phenylindole
dihydrochloride staining method in rice [41].
Because of the many reports of genes/QTL in the soy-

bean genome positioned using SSR or SNP markers, the
corresponding physical position of the molecular markers
in the new assembly vs. the older assembly is frequently
requested by users. We identified physical positions for al-
most all of the markers in the BARCSOYSSR_1.01 data-
base and the SoySNP50K BeadChip in the Wm82.a2.v1 vs.
the Glyma1.01 assemblies. The updated information is an-
ticipated to facilitate the identification of molecular
markers in desired positions of the genome and make the
SSR and SNP databases more user-friendly.

Conclusions
Two high density genetic linkage maps of soybean based
on 21,478 SNP loci mapped in the G. max x G. soja

population with 1083 recombinant inbred lines and
11,922 SNP loci mapped in the G. max x G. max popu-
lation with 922 RILs were constructed. The maps con-
tained the highest number of markers and were
constructed based on the largest mapping populations in
soybean to date. With the high density genetic linkage
maps, false joins or mis-placed scaffolds and unanchored
scaffolds in the first version of the soybean whole-
genome sequence assembly (Glyma1.01) were identified
and the corresponding scaffolds were broken or reas-
sembled to a new Wm82.a2.v1 assembly which is available
at the site http://www.phytozome.jgi.doe.gov/pz/por-
tal.html/ of the Department of Energy, Joint Genome In-
stitute. In addition, the euchromatic and heterochromatic
regions along each chromosome of the soybean were
delimited and the positions of commonly used soybean
SSR and SNP markers were determined based on the
Wm82.a2.v1 assembly. The information will facilitate the
genetic and genomics research in soybean.

Methods
Mapping populations
A cross between cultivated soybean (Glycine max L.
Merr.) Williams 82 and wild soybean (G. soja Sieb. et
Zucc.) PI479752 (WP) was made at Beltsville, MD. The
WP population consists of 1083 F5-derived RILs. The
Essex ×Williams 82 population with 922 F5-derived RILs
was developed at the University of Tennessee, Knoxville,
TN. One of the parents in both mapping populations
was Williams 82, which is the cultivar that was used in
the synthesis of the first whole-genome sequence of the
soybean provided in the Glyma1.01assembly [11].

Genotyping RILs of the mapping populations with the
SoySNP50K BeadChip
Song et al. (2013) [23] identified 209,903 SNPs by map-
ping short reads from each of eight soybean accessions
which included six cultivated and two wild soybean ge-
notypes and selected 60,800 SNPs for inclusion in an
Illumina Infinium BeadChip that ultimately contained
more than 52,000 SNPs. The SNPs for the SoySNP50K
BeadChip were selected so as to equalize the distance
between selected SNPs in the euchromatic and hetero-
chromatic regions, increase assay success rate, and
minimize the number of SNPs with low minor allele fre-
quency. Of the 60,800 SNPs selected for the BeadChip,
50,701 were targeted to euchromatic regions and 10,000
to heterochromatic regions of the 20 soybean chromo-
somes. In addition, 99 SNPs were targeted to un-
anchored sequence scaffolds. The BeadChip was used to
genotype the RILs in the WP and the EW populations
using the Illumina platform following the Infinium® HD
Assay Ultra Protocol (Illumina, Inc. San Diego, CA) and
the SNP alleles were called using the GenomeStudio

Table 4 Approximate positions of heterochromatic and
euchromatic regions in the Wm82.a2.v1 whole genome
sequence

Chromosome Heterochromatic region (Mb) Euchromatic region (Mb)

Chr01 8.1-47.4 1-8.1; 47.4-56.8

Chr02 16.0-38.2 1-16.0; 38.2-48.6

Chr03 6.9-33.4 1-6.9; 33.4-45.8

Chr04 10.4-43.5 1-10.4; 43.5-52.4

Chr05 6.4-30.2 1-6.4; 30.2-42.2

Chr06 18.2-44.4 1-18.2; 44.4-51.4

Chr07 17.7-34.6 1-17.7; 34.6-44.6

Chr08 22.9-40.4 1-22.9; 40.4-47.8

Chr09 6.4-38.8 1-6.4; 38.8-50.2

Chr10 6.9-36.9 1-6.9; 36.9-51.5

Chr11 11.4-30.0 1-11.4; 30.0-34.7

Chr12 8.2-32.4 1-8.2; 32.4-40.0

Chr13 0-13.3 1-0; 13.3-45.8

Chr14 9.7-43.7 1-9.7; 43.7-49.0

Chr15 18.3-43.0 1-18.3; 43.0-51.7

Chr16 8.3-26.8 1-8.3; 26.8-37.8

Chr17 14.3-35.8 1-14.3; 35.8-41.6

Chr18 20.5-43.3 1-20.5; 43.3-58.0

Chr19 8.9-34.3 1-8.9; 34.3-50.7

Chr20 3.2-33.7 1-3.2; 33.7-47.9

Total 501.4 (53 %) 447.8 (47 %)
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Genotyping Module v1.8.4 (Illumina, Inc. San Diego,
CA) as described previously [23].

Construction of the high-density linkage maps
Linkage maps for the WP and EW populations were cre-
ated using the MSTMap software [42] and the genetic
distance between SNPs was calculated using JoinMap
4.0 [43]. Before linkage map analysis, loci with segrega-
tion distortion in the population (p < 0.01) or with miss-
ing data >10 % were eliminated. RILs with missing data
>10 % were also removed. In order to reduce the time
required to determine the order and genetic distance of
the SNPs in each linkage group, SNPs with identical al-
lele segregation patterns among RILs of WP or EW pop-
ulations were clustered into groups, and only one SNP
from each group was included in linkage analysis. The
remaining SNPs were assigned to the same linkage map
position as the representative SNP after completion of
the linkage analysis. A LOD of 11 was used to cluster
the markers into linkage groups. Recombination values
were converted to genetic distances using the Kosambi
mapping function [43].

Identification of genomic regions in the Glyma1.01
assembly that required re-positioning or reorientation
Genetic linkage map positions of SNPs on the linkage
maps of WP and EW were compared with their physical
positions in the Glyma1.01assembly and regions that re-
quired re-positioning or reorientation were identified
based upon marker orders supported by the WP and/or
the EW mapping data and scaffolds with false joins were
broken and re-assembled. The physical positions of these
SNPs in the Glyma1.01 were previously reported by
Song et al. (2013) [23].

Physical positions of commonly used SSR and SNP
markers in the new assembly- Wm82.a2.v1
The BARCSOYSSR_1.0 database consists of 3322 SNPs
and 33,065 SSRs [30], and the SoySNP50K BeadChip
contained 52,041 SNPs selected from the soybean gen-
ome. In order to position these loci in the Wm82.a2.v1
soybean genome sequence, source sequences of the SSR
and the sequences flanking the SNP loci were aligned to
the Wm82.a2.v1 soybean sequences using standalone
Megablast software (http://www.ncbi.nlm.nih.gov/blast/
megablast.shtml) with W = 50, cutoff percentage of
alignment = 99 and low complexity filtered. The primer
sequences of the SSR loci were mapped to the genome
sequence using the standalone software e-PCR (ftp://
ftp.ncbi.nih.gov/pub/schuler/e-PCR/). SSR positions
were definitively determined if both the source se-
quences and primer sequences of the SSRs aligned to
the same region of the genome sequence with expected
e-PCR amplicon length and with the SSR motif

between the two primer sequences. High stringency align-
ment (gap = 0, number of mismatch = 0) with e-PCR of
primer sequences to the genome sequence was used to
map the primer sequences.

Availability of supporting data
The SNP information is deposited in the dbSNP database
of NCBI (ss715578401-ss715639200). The new soybean
whole genome sequence assembly (Wm82.a2.v1) which is
completed at the Department of Energy, Joint Genome In-
stitute is available at http://www.phytozome.jgi.doe.gov/
pz/portal.html/. The remaining data sets supporting the
results of this article are included within the article and its
four additional files.

Additional files

Additional file 1: Table S1. NCBI ssID, SNP ID of SoySNP50K SNPs (Song
et al. [23]), genome position Glyma1.01, corresponding genome position in
the Wm82.a2.v1 assembly, gene IDs of SNPs in the Wm82.a2.v1 assembly
and genetic linkage group and linkage position of the SNPs in the Williams
82 x PI479752 (WP) and Essex x Williams 82 (EW) populations (XLS 10149 kb)

Additional file 2: Figure S1. Consensus diagram of physical order (left)
of common SNPs in Glyma1.01 vs. their genetic linkage map order on
the EW (middle) and the WP (right) maps. Common SNP loci are
connected with red lines. (DOCX 2614 kb)

Additional file 3: Figure S2. Plots of genetic vs. physical distance of
SNPs. Figures Gm01-Gm20, and Chr01-Chr20 are the plots of genetic on
physical distance based on Glyma1.01 and Wm82.a2.v1, respectively. Blue
and red lines are based on the Williams 82 × PI479752 and the Essex ×
Williams 82 populations, respectively. (DOCX 1660 kb)

Additional file 4: Table S2. Genomic position and corresponding gene
IDs of the SSR and SNP markers in the Wm82.a2.v1 assembly, the SSR and
SNP markers were from the BARCSOYSSR_1.0 database (Song et al. [30]).
(XLS 8876 kb)
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