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Knockdown of MLO genes reduces susceptibility to powdery
mildew in grapevine
Stefano Pessina1,2, Luisa Lenzi1,3, Michele Perazzolli1, Manuela Campa1, Lorenza Dalla Costa1, Simona Urso4,5, Giampiero Valè4,5,
Francesco Salamini1, Riccardo Velasco1 and Mickael Malnoy1

Erysiphe necator is the causal agent of powdery mildew (PM), one of the most destructive diseases of grapevine. PM is controlled by
sulfur-based and synthetic fungicides, which every year are dispersed into the environment. This is why PM-resistant varieties
should become a priority for sustainable grapevine and wine production. PM resistance can be achieved in other crops by knocking
out susceptibility S-genes, such as those residing at genetic loci known as MLO (Mildew Locus O). All MLO S-genes of dicots belong
to the phylogenetic clade V, including grapevine genes VvMLO7, 11 and 13, which are upregulated during PM infection, and
VvMLO6, which is not upregulated. Before adopting a gene-editing approach to knockout candidate S-genes, the evidence that loss
of function of MLO genes can reduce PM susceptibility is necessary. This paper reports the knockdown through RNA interference of
VvMLO6, 7, 11 and 13. The knockdown of VvMLO6, 11 and 13 did not decrease PM severity, whereas the knockdown of VvMLO7 in
combination with VvMLO6 and VvMLO11 reduced PM severity up to 77%. The knockdown of VvMLO7 and VvMLO6 seemed to be
important for PM resistance, whereas a role for VvMLO11 does not seem likely. Cell wall appositions (papillae) were present in both
resistant and susceptible lines in response to PM attack. Thirteen genes involved in defense were less upregulated in infected mlo
plants, highlighting the early mlo-dependent disruption of PM invasion.
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INTRODUCTION
Vineyards are treated with an impressive amount of chemical
compounds, particularly fungicides, to prevent yield losses due to
fungal pathogens. In France, Italy, Spain and Germany, between
1992 and 2003, 73% of the fungicides were used for grapevine
protection, a crop that covers only 8% of the agricultural land in
those countries.1

Worldwide, grapevine powdery mildew (PM), caused by the
fungus Erysiphe necator, is a destructive disease.2 E. necator Schw.
(syn. Uncinula necator (Schw.) Burr.) is an obligate biotroph
infecting all green tissues of grapevine and results in significant
losses in yield and berry quality. Symptoms are a white or gray
powder covering both leaf surfaces, and, after infection, the fruits
show shriveling or cracking.3 The quality of the fruit is severely
damaged, due to increased acidity and decreased anthocyanin
and sugar content.4

PM can be controlled by frequent applications of fungicides,
particularly those based on sulfur. However, due to the ecological
drawbacks of fungicides,5 the relative high costs (up to 20% of
total grapevine production expenses6) and the rapid appearance
of resistant strains of the pathogen7–9 because of its adaptative
gene copy-number variation,10 new alternatives to chemical
treatments should be adopted. Resistant varieties are one of
the best options. The use of PM-resistant cultivars could reduce
production costs in California by 720 $ ha− 1, with a significant
reduction of fungicide usage.6

Vitis vinifera is susceptible to PM,11 whereas North American
Vitis species, due to their co-evolution with E. necator, have
variable degrees of resistance to the pathogen.12 Their resistances
have been transferred to V. vinifera but the acceptance of resistant
hybrids by producers and consumers has been very limited
because of the attachment to traditions and lower quality of
resulting wine, although resistant cultivar suitable for wine
production are becoming available.6 One strategy to create crops
resistant to diseases is based on the exploitation of R-genes that
encode proteins that recognize pathogen effectors and trigger
defense response,13 such as the Vitis REN and RUN genes.14

Resistance manifests as localized hypersensitive responses at the
sites of attempted infection.15 However, R-genes are frequently
overcome by mutations of the pathogen.16 An alternative
approach is based on susceptibility genes (S-genes), which loss
of function results in recessively inherited resistance.17 Knockout
of S-genes may, however, induce pleiotropic phenotypes in the
plant.18,19

A typical class of S-genes is represented by the MLO (Mildew
Locus O) genetic factors that, when inactivated, results in recessive
mlo resistance, as discovered in barley.20 MLO genes are
largely conserved across the plant kingdom and their loss of
function resulted in PM resistance in Arabidopsis thaliana,21 pea,18

tomato,22 wheat23 and pepper.24 Of the seven phylogenetic clades
in which the MLO family is divided,25,26 only two include S-genes:
clade IV with all monocot S-genes27,28 and clade V with all dicot
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S-genes.21,22,29,30 Not all members of clades IV and V are S-genes,
but candidates can be identified during early stages of PM
infection because of their increased expression, as documented
in tomato,22 barley,31 pepper,24 grapevine29,30 and apple.26 In
grapevine, of four clade V MLO genes, three (VvMLO7, VvMLO11
and VvMLO13) are upregulated early after PM infection, whereas
VvMLO6, the fourth, is not transcriptionally responsive to the
pathogen.29,30

MLOs are membrane proteins with seven transmembrane
domains32 involved also in a variety of physiological processes
in different tissues, such as root morphogenesis33 and pollen tube
reception by embryo sac.34 The proposed function of MLO S-genes
is the negative regulation of vesicle-associated and actin-
dependent defense pathways at the site of PM penetration.27

The secretory vesicle traffic controls pathogen penetration,
allowing the formation of cell wall appositions called papillae,2,33

which are associated with mlo resistance.21,36

The development of DNA-editing tools is rapidly changing plant
genetics and biotechnology, due to the possibility of inducing
mutations in specific genes.37–39 Before adopting a gene-editing
approach to knockout candidate S-genes, the evidence that loss of
function of MLO genes can reduce PM susceptibility is necessary.
This paper reports the knockdown through RNA interference of
VvMLO6, 7, 11 and 13 and its effect on PM infection in grapevine.

MATERIALS AND METHODS
Constructs
Three hundred- to 600-bp fragments of genes VvMLO6, VvMLO7, VvMLO11
and VvMLO13 were amplified (Supplementary Table S1) and cloned in
pENTR/SD-TOPO (Invitrogen). After checking the sequences, the fragments
were inserted in the RNAi Gateway vector pK7GWIWG2D(II)40 (http://www.
psb.ugent.be/), as in Urso et al.41 After sequencing both the strands, the
constructs were inserted in Agrobacterium tumefaciens strain GV3101, as
in Zottini et al.42 A. tumefaciens-transformed cells were tested by PCR for
the presence of constructs, using primers annealing to the 35S promoter
(5′-CGCACAATCCCACTATCCTT-3′) and the MLO fragment (Supplementary
Table S1).

Plant material, gene transfer and screening of regenerants
Plant material of the grapevine cultivar long-cluster Brachetto was
cultivated in vitro as described by Dalla Costa et al.43 This cultivar was
chosen because it is easy to transform,44,45 has high somatic embryogen-
esis efficiency and good efficiency of regeneration from the callus.46

Somatic embryos were used for gene transfer. Gene transfer, regeneration
and selection of transgenic plants were performed as in Dalla Costa et al.43

Five different gene transfers were carried out: four aimed to silence the
four MLO target genes and the fifth was a control consisting of the empty
vector (pK2WG7). DNA was extracted from in vitro leaf tissue (Phytopure
kit, GE Healthcare, Little Chalfont, Buckinghamshire, UK). Integration was
proven using the primers described above. Transformed in vitro grown
lines were moved to a woody plant medium47 in growth chamber at 20–
24 °C and transferred in fresh medium once a month.

Greenhouse acclimation
Plants were first acclimated to greenhouse conditions in a growth chamber
at 25 °C, 16-h day/8-h night, relative humidity (RH) 70±5%. One-month-old
plants with at least two main roots 3-cm long were transferred in a 250-ml
plastic cup containing wet autoclaved turf (Tercomposti Spa, Brescia, Italy)
and sealed with parafilm, to preserve humidity. Every 7 days, holes were
made in the parafilm cover to progressively reduce air humidity and promote
the formation of the foliar cuticle. After 3 weeks, parafilm was completely
removed and, after 1 more week, the plants were transplanted in 1 l pots
kept in the greenhouse at 25 °C, 16-h day/8-h night, humidity 70±5%.

E. necator and P. viticola inoculation and disease severity
assessment
The E. necator and P. viticola inocula were obtained from infected leaves of
an untreated vineyard in northern Italy (Trentino region). Subsequent

reproduction of the inoculum was carried out infecting the V. vinifera
cultivar Pinot Noir, under greenhouse conditions. For E. necator inocula-
tion, plants were dry inoculated onto target leaves gently brushing adaxial
leaf surfaces with infected young leaves carrying fresh PM sporulation.48

Inoculated plants were incubated in a greenhouse at 25± 1 °C with 100%
RH for 6 h to promote fungal penetration, and then kept at 25 ± 1 °C and
70± 10% RH until the end of symptom evaluation. Disease severity was
assessed on all leaves at 14, 22 and 30 days post inoculation (d.p.i.).
For P. viticola inoculation, fresh sporangia were collected by washing the

abaxial surfaces, carrying freshly downy mildew (DM) sporulating lesions,
with distilled water at 4 °C. Abaxial leaf surfaces were sprayed with the
inoculum suspension of P. viticola (2 × 105 sporangia per ml). Inoculated
plants were incubated overnight in the dark at 25 °C with 99–100% RH,
and then maintained under controlled greenhouse conditions at 25 ± 1 °C
and 70± 10% RH. Six days after inoculation, plants were incubated
overnight in darkness at 25 °C with 99–100% RH to allow DM sporulation
and assess the disease severity.
Severity of PM and DM was assessed visually on all leaves of each plant,

according to the standard guidelines of the European and Mediterranean
Plant Protection Organization.49,50 For each leaf, disease severity was
expressed as the proportion (percentage of 0–100%, with intervals of 5%)
of the leaf area covered by white sporulation of PM or DM in relation to the
total leaf area, and a mean value was calculated for each plant. Disease
reduction was calculated as (disease severity in control plants−disease
severity in transformed plants)/(disease severity in control plants) and
expressed as a percentage. For PM severity, the area under disease
progress curve was considered as a quantitative summary of disease
intensity over time to analyze all time points together51,52 using the
following formula: area under disease progress curve= ∑[(Xi+Xi+1)/2] × (ti+1–ti),
where Xi corresponds to the disease severity (%) at assessment i, Xi+1
corresponds to the disease severity (%) at subsequent assessment i+1 and
(ti+1− ti) corresponds to the number of days between the two consecutive
assessments. PM severity was also assessed as the number of E. necator
conidia produced from infected leaves as in Angeli et al.53 Three leaves
were collected from each replicate at 30 d.p.i. and four disks of 0.8 cm
diameter for each leaf were cut, for a total of 12 disks per replicate. Leaf
disks were transferred to 50-ml tubes containing 5 ml distilled water with
0.01% Tween-80 (Sigma-Aldrich, St. Louis, MO, USA). Tubes were vortexed
for 1 min and the concentration of conidia per ml was determined by a
hemocytometer count. The values obtained were converted in conidia per
cm2 of grapevine leaf. Two inoculation experiments were carried out and
in each experiment three to nine biological replicates (plants) per line were
analyzed in a randomized complete block design.

Histological analysis
Two inoculated leaves were collected from three replicates of each
transgenic and control line at 3, 10 and 21 d.p.i. for hyphae visualization
and histological analyses. Leaves were treated as described by Vanacker
et al.54 with the following modifications: small pieces of leaf with the
adaxial surface up were laid on filter paper moistened with ethanol:glacial
acetic acid (3:1, v/v) until the chlorophyll was removed. Leaf segments
were transferred to water soaked filter paper for 2 h, incubated in
lactoglycerol [lactic acid:glycerol:water 1:1:1 (v/v/v)] for 12 h and stored in
lactoglycerol at room temperature. For microscopic analysis, leaf segments
were mounted on microscope slides and a drop of aniline blue (0.1% (w/v)
in lactoglycerol) was pipetted on their surface. Aniline blue staining does
not fluoresce when in lactoglycerol and E. necator structures (hyphae,
conidia and appressoria) were visualized using the bright-field illumination
of a Leica LMD7000 microscope (Leica Microsystems, Wetzlar, Germany).
After spore localization, fluorescence was used with a LMD filter (BP filter
380–420-nm excitation, 415 dichroic mirror, and BP 445–485-nm emission)
to visualize the bright blue–green auto-fluorescence associated with
infected cells and papillae (autofluorogenic phenolic compounds)
formation.54

RNA extraction and gene expression analysis
The first gene expression analysis of transgenic plants was carried out on
in vitro grown lines to identify genotypes with reduced expression of
target genes. Three biological replicates were collected from each line.
The second analysis was carried out on acclimated transgenic plants, with
leaf samples collected before inoculation, 24 h and 10 days post PM
inoculation, the time of the last two samplings corresponding to the
upregulation of MLO genes after infection.29,30 Five biological replicates
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were collected from each line. For each line at each time point, the third
and fifth half leaves from the top were collected, frozen in liquid nitrogen
and stored at − 80 °C.
Total RNA was extracted with the Spectrum Plant Total RNA kit (Sigma-

Aldrich). Following a treatment with the DNAse I (Sigma-Aldrich), the RNA
was reverse-transcribed using the SuperScript III reverse transcriptase
(Invitrogen, Life Technologies, Waltham, USA).
Quantitative PCR amplification (SYBR Green Supermix, Bio-Rad, Hercules,

CA, USA) was carried out in a 15-μl volume (primers in Supplementary
Table S2) and the results were recorded by a CFX96 Touch Real-Time PCR
detection system (Bio-Rad), run by CFX Manager software (Bio-Rad
Laboratories, Hercules, CA, USA). The software applies comparative quanti-
fication with an adaptive baseline. Each sample was run in two technical
replicates with the following parameters: 95 °C 3 min, 40 cycles of 95 °C 10 s
and 55 °C 30 s, with a final step at 95 °C 10 s. Primers for genes VvMLO6,
VvMLO11 and VvMLO13 were taken from Winterhagen et al.,30 whereas for
VvMLO7 they were specifically designed (Supplementary Table S2). Primers
for VvWRKY19, VvWRKY27, VvWRKY48 and VvWRKY52 were taken from Guo
et al.,55 for VvEDS1 from Gao et al.56 and for VvPR1, VvPR6 and VvLOX9 from
Dufour et al.57 The new primer pairs were designed with the NCBI Primer
Designing Tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/; Supple-
mentary Table S2). Complementary DNA samples diluted 10, 100, 1000
and 10 000 times were used to test calculate the efficiency of the primers
pairs and the size of the PCR products was confirmed by agarose gel
electrophoresis. Presence of a specific final dissociation curve was
determined after every quantitative PCR run with progressive increments
of temperature from 65 to 95 °C (0.5 °C each step, 5 s).
Reference genes were, as reported for grapevine,58 Elongation Factor 1α,

GAPDH and Actin. Reference genes stability was assessed with GeNorm
(medgen.ugent.be/ ~ jvdesomp/genorm/): the three genes had M-values
o0.5, well below the threshold of 1.5 considered sufficient for
stability.59–61

Threshold cycles (Ct) were converted to relative expression following
Hellemans et al.62 and based on the average Ct of two technical replicates.
For MLO genes, the reference Ct was the average of all samples; for other
genes, the control EVB (empty vector Brachetto) at T=0 was adopted.

Statistical analyses
Disease severity. Data were analyzed using the Statistica 9 software
(StatSoft, Tulsa, OK, USA) and the package SPSS (IBM, Armonk, NY, USA).
The smallest statistical unit considered was a plant. Severity values of all
leaves were averaged, resulting in the value considered in further analyses.
Normal distributions (Kolmogorov–Smirnov and Shapiro–Wilk tests,
P40.05) were validated for variances homogeneity (Levene’s test,
P40.05) and subsequently used for one-way analysis of variance (ANOVA)
with Tukey’s post hoc test (Po0.05) at each time point. Data were
transformed in arcsin(x) to meet the pre-requisites of ANOVA. In case of
non-homogeneous variances, the Games–Howell’s post hoc test was used.
In some cases, data from two experiments were pooled and the ANOVA

applied independently for each time point (14, 22 and 30 d.p.i.). Area
under disease progress curve data were treated as for severity data.
Conidia counts were analyzed with the Kruskall–Wallis test (Po0.05).

Quantitative PCR data analysis. Values of relative expression were
expressed in logarithms26 to obtain normal distributions and homogeneity
of variances of the residues, as assessed with Shapiro–Wilk (P≤ 0.05) and
Levene (P≤ 0.05). Homoscedastic data were analyzed with Tukey’s test
(Po0.05) and non-homoscedastic with Games–Howell test (Po0.05)
using the statistical package SPSS (IBM).
Expression data from two experiments were analyzed independently

and pooled. Differences were revealed by one-way ANOVA with Tukey post
hoc test (Po0.05). In addition, a two-way ANOVA with Tukey post hoc test
(Po0.05), considered at the same time the effects of the transgenic line
and of the time point. For the gene expression characterization of TLB4,
Fisher post hoc test was used.

RESULTS
Gene transfer, selection and acclimation of MLO transgenic lines
A total of five gene transfers were carried out. Four aimed to
knockdown (KD) specific MLO genes (i = KD-VvMLO6, ii = KD-
VvMLO7, iii = KD-VvMLO11, iv = KD-VvMLO13), the fifth to insert
an empty vector. Thirty-seven regenerated lines were obtained,

with 29 of them confirmed to contain the insert (Supplementary
Table S3). The result of the PCR analysis of six lines is shown in
Supplementary Figure S1. Twenty-six transgenic lines were
propagated in vitro and tested for the silencing of MLO genes
with quantitative PCR. Due to in vitro contaminations, three lines
were lost before it was possible to test the level of expression.
Gene knockdown was evident for three lines out of eight from
gene transfer (iii) (KD-VvMLO11) and three out of nine from gene
transfer (iv) (KD-VvMLO13), whereas the lines regenerated from
gene transfers (i) (KD-VvMLO6) and (ii) (KD-VvMLO7) did not show
any reduction of expression (data not shown). Regenerated lines
were also tested for off-target silencing, showing that the RNAi
fragments targeted other clade V MLO genes (data not shown). Six
lines with various combinations of silenced genes were selected
and indicated with acronyms TLB1 (transgenic line of Brachetto) to
TLB6 (Supplementary Table S3). Lines from TLB1 to 3 came from
gene transfer (iii) (KD-VvMLO11), lines from TLB4 to TLB6 from
gene transfer (iv) (KD-VvMLO13; Supplementary Table S3). The
control was the EVB line. In addition, TLB7, a regenerated line with
no reduction of expression, was also included. All lines, including
the control, will be referred in the text as ‘transgenic lines’. Lines
from TLB1 to 7 are further indicated as ‘RNAi lines’ and from TLB1
to 6 ‘mlo lines’.
The survival rate of plants to the acclimation process was ~ 85%.

Under greenhouse conditions, the transgenic plants showed
normal growth and no pleiotropic phenotypes.

PM and downy mildew resistance of transgenic lines
Two independent experiments of PM inoculation were carried out
on the RNAi lines TLB1 to 7, and the transgenic control EVB. Three
mlo lines, TLB4, 5 and 6, showed a reduction of E. necator infection
460% at 30 d.p.i. (Figure 1; Table 1). The disease reduction of
TLB6 decreased with the progression of the infection (Table 1).
TLB1, 2, 3 and 7 had a level of susceptibility to PM comparable to
EVB (Figure 1; Supplementary Figure S2). The leaf phenotypes in
Figure 1 visualize the differences between the different lines. All
the mlo lines showed fewer conidia at 30 d.p.i. compared with EVB
and the decrease was statistically significant for TLB4, TLB5 and
TLB6 (Supplementary Figure S3). Compared with EVB plants, TLB4,
5 and 6 had a reduction of 93%, 95% and 72%, respectively.
Conidia counts and disease severity were, as expected, correlated
(R= 0.58; P⩽ 0.01). The reduction of conidia in TLB 4, 5 and
6 (93, 95 and 72%) was higher than the reduction of PM symptoms
(68.4, 76.6 and 65.1%), indicating that the leaf diseased area had
a lower concentration of conidia in TLB 4, 5 and 6 compared
with EVB.
Line TLB4 was characterized by histological analysis, demon-

strating a reduced progression of PM infection compared with EVB
(Figure 2). In EVB, conidiophores appeared at 10 and 21 d.p.i. and
they were present all over the leaf surface (Figure 2a), whereas on
TLB4 leaves they were visible in a limited number only at 21 d.p.i.
(Figure 2b). Histological analysis revealed the accumulation of
autofluorogenic phenolic compounds possibly associated to host
cell response and papillae formation in both TLB4 and EVB plants
at 3 d.p.i. (Figure 3).
An experiment was designed to test the cross-reaction of

mlo lines to fungal pathogens different from PM. Three mlo lines
(TLB1, 3 and 4) and the EVB control were inoculated with the
downy mildew causal agent Plasmopara viticola. None of the
plants were resistant and all plants showed statistically compar-
able levels of susceptibility to the pathogen (Supplementary
Figure S4).

Expression of MLO genes in the mlo transgenic lines
The lines TLB1 to 6 and the EVB control were considered in a gene
expression analysis. The results concerned four genes member of
clade V and supported the off-target cross-silencing, as well as,

Knockdown of MLO genes in grapevine
S Pessina et al.

3

© 2016 Nanjing Agricultural University Horticulture Research (2016)

http://www.ncbi.nlm.nih.gov/tools/primer-blast/


some variability among samples of different time points (Figure 4).
Lines TLB1, 2 and 3, all resulting from transformation (iii) (KD-
VvMLO11), as expected had the target gene VvMLO11 silenced.
TLB1 showed also knockdown of VvMLO13 and TLB3 of VvMLO6
(Table 2). Lines TLB4, 5 and 6 derived from transformation (iv) (KD-
VvMLO13) showed more off-target silencing: in TLB4 and 6, all four
clade V MLO genes were, to some degree, significantly knocked
down, whereas in TLB5 the expression of genes VvMLO6, 7 and 11
was reduced (Table 2).

Gene expression analysis of the mlo line TLB4
The expression profile at three time points of 13 genes not
belonging to the MLO gene family and modulated by PM infection
was carried out for the resistant line TLB4 and compared with the
EVB line (Figure 5; Supplementary Table S4). The reason to choose
TLB4 over the other resistant lines was that, in this line, all four
MLO clade V genes were knocked down and the knockdown
was more intense than TLB5 and 6. In EVB, seven of the genes
tested were upregulated at 10 d.p.i. In TLB4, fewer genes were
upregulated and the increase of expression was limited in terms of
fold change (Figure 5; Supplementary Table S4). Moreover, three
genes were downregulated in TLB4 after inoculation, namely,
VvPR6 (pathogenesis related) at 1 d.p.i. and VvNPF3.2 (nitrate
transporter/peptide transporter family) and VvALS1 (acetolactate
synthase) at 10 d.p.i. It is noteworthy that, before the inoculation,
there were no differences in expression between TLB4 and the
control EVB (Figure 5; Supplementary Table S4).

DISCUSSION
Loss-of-function mutations of MLO genes reduce susceptibility to
PM in barley,63 A. thaliana,21 pea,18 tomato,22 wheat23 and
pepper.24 Because in dicots not all Clade V MLO S-genes are
implicated in PM susceptibility,21,22,29,30 the aim of this work was
to identify which of the clade V MLO genes of grapevine have a
role in PM susceptibility and can be inactivated to develop
resistant genotypes. Out of 26 transgenic lines tested, six from
gene transfers (iii) (KD-VvMLO11) and (iv) (KD-VvMLO13) supported
significant gene knockdown. In the regenerated lines obtained
from gene transfers (i) (KD-VvMLO6) and (ii) (KD-VvMLO7),
reduction of expression was not evident. It cannot be excluded

Figure 1. Area under disease progress curve (AUDPC) of grapevines inoculated with Erysiphe necator in control (EVB) and transgenic lines
(TLB1, 2, 3, 4, 5, 6 and 7). The average scores of AUDPC (from 8 to 19 biological replicates) from two experiments are reported. Error bars show
s.e.m. The asterisks indicates statistically significant differences respect to the control line EVB, according to Tukey or Games–Howell post hoc
test (P= 0.05). The representative leaves reproduced here were collected 30 days after inoculation.

Table 1. Disease reduction of seven RNAi lines transformed with MLO
knockdown constructs.

Gene
transfer

Number of
plants

Disease reduction (%)a Average
reduction (%)

14 d.p.i. 22 d.p.i. 30 d.p.i.

TLB1 iii 8 22.8 32.3 34.3 29.8
TLB2 iii 15 49.2 37.2 23.8 36.8
TLB3 iii 15 17.9 14.8 2.0 11.6
TLB4 iv 19 60.8 71.7 72.8 68.4
TLB5 iv 14 76.7 79.1 74 76.6
TLB6 iv 11 71.8 63.1 60.3 65.1
TLB7 iii 13 − 8.0# − 21.5b − 21.2b − 16.9b

Abbreviations: EVB, empty vector Brachetto; RNAI, RNA interference. aLine
EVB was the control (12 replicates). Disease reduction was calculated as
disease severity of EVB−disease severity of the transgenic line divided by
disease severity of EVB× 100. bThe negative values of TLB7 indicate higher
level of infection compared with EVB.
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that this was due to the short RNAi fragments present in the
constructs.64 The detection of off-target silencing in five of the six
mentioned lines was expected, as clade V MLO genes have high
levels of sequence identity (36–60%, 46% on average29,30). To find
a balance between specificity (short RNAi fragments) and
effectiveness (long RNAi fragments) is particularly difficult in gene
families with high sequence similarity.65 As the aim was to study
the effect of the knockdown of four MLO genes quite similar to
each other, we opted for long RNAi fragments, so that off-target
silencing was not only expected but also desired.
Knockout and knockdown of MLO genes may induce pleiotropic

phenotypes, such as necrotic spots on leaves and reduced grain
yield in barley,20 slow growth in A. thaliana21 and reduced plant
size in pepper.24 In grapevine, no pleiotropic phenotypes were
observed under the experimental conditions adopted.
Lines TLB4, 5 and 6, which showed clear resistance to PM,

allowed the investigation of the link between resistance and the
expression of specific MLO genes. VvMLO11 expression was
significantly reduced in susceptible and resistant mlo lines: it is
concluded that its knockdown was not directly linked to grapevine
susceptibility to PM. VvMLO6 was significantly silenced in the
resistant lines TLB4, 5 and 6, and in the susceptible line TLB3. As
for VvMLO11, the knockdown of VvMLO6 in both susceptible and
resistant lines indicates that this should not be an S-gene. Similarly
to VvMLO6, VvMLO13 was knocked down in the resistant lines
TLB4 and 6, but also in the susceptible line TLB1. VvMLO7 was
knocked down only in the three resistant lines TLB4, 5 and 6, but it
was always knocked down together with other two or three MLO

genes, as there was no line showing the knockdown of VvMLO7
only. Therefore, the knockdown of multiple MLO genes provided
resistance to PM. VvMLO6 was also knocked down in all the
resistant lines with a reduction of expression of 58–65%, whereas
the reduction of its expression was of only 29% in the susceptible
line TLB3, indicating that it can contribute to PM resistance. There
are no information available about how the reduction of the
expression of an S-gene affects disease severity: it could be a
linear relationships, meaning that the reduction of expression
causes a proportional reduction of disease severity, or there could
be a threshold above which the knockdown, even if statistically
significant, does not cause any reduction of disease severity. Given
the weak knockdown of VvMLO6 in TLB3 (29%), it is possible that
this hypothetical threshold was not surpassed, therefore we
cannot rule out the possibility of a role for VvMLO6. This would be
particularly surprising, as there are no precedence of MLO genes
acting as S-genes without being upregulated upon PM inocula-
tion, such as VvMLO6.29,30 In conclusion, VvMLO6 and VvMLO7 are
the main candidates for causing PM susceptibility in V. vinifera,
with a possible additive activity. A similar scenario was observed in
A. thaliana, where the simultaneous knockout of three MLO genes
is necessary to obtain complete PM resistance: knockout of
AtMLO2 results in a moderate level of resistance, whereas the
knockout of AtMLO6 and AtMLO12, alone or combined, does not
decrease the intensity of the infection.21 When AtMLO2 is knocked
out together with AtMLO6 or AtMLO12, the level of resistance rises
to become complete when the three genes are knocked out
together.21 In grapevine, VvMLO7 is the best candidates to act as

Figure 2. Germination of E. necator conidia in the control line EVB (a) and in the resistant transgenic line TLB4 (b). Microscopy images of
infected leaves were taken at 3, 10 and 21 days post inoculation (d.p.i.) with powdery mildew. Insert at high magnification highlights the
germination of an E. necator conidia at 3 and 10 d.p.i. The arrows indicate the conidiophores.
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A. thaliana AtMLO2, whereas VvMLO6 and VvMLO11 might have an
additive synergistic role in PM susceptibility, as their expression
was also significantly reduced in all three resistant lines. In
A. thaliana, the knockout of three MLO genes induces complete
resistance,21 a situation not observed in grapevine, in agreement
with the incomplete silencing of MLO genes obtained by the RNAi
approach. A complementation test carried out in A. thaliana mlo
triple mutant showed that VvMLO11 and VvMLO13 induce
susceptibility to PM, whereas VvMLO7 has only a partial effect
and VvMLO6 has no effect at all.66 However, single and double
VvMLO11 and VvMLO13 knockdown mutants of V. vinifera
obtained by RNAi did not show significant reduction of PM
penetration.15 Accordingly, our data indicated only a putative
additive effect provided by VvMLO11 and no role at all for
VvMLO13. The differences observed with the results carried out by
Feechan et al.66 can be explained by the fact that they operated in
a heterologous system (A. thaliana) not reproducing with fidelity
the PM infection of grapevine plants.
The precise mechanism through which the reduction of MLO

genes expression results in resistance to PM pathogens is not
completely clear. Resistance seems linked to secretory vesicles
traffic2,35 and to the formation of cell wall appositions called
papillae.21 These structures consists of a callose matrix enriched in
proteins and autofluorogenic phenolics compounds,54 and their
formation depends on endomembrane transport.67 Our results
showed the accumulation of autofluorogenic compounds at the
infection sites of transgenic and control lines that reflects the host
response and the papilla formation. This first observation
suggested that papillae were accumulated in both TLB4 and EVB
lines. A difference in dimension was noted between the two lines,
but further investigations are required to clear whether this is a
direct consequence of MLO knockdown or a random event.
Particularly, the use of specific staining protocols68 would allow to

better characterize the composition, dimensions and timing of
papilla accumulation in resistant and susceptible lines. It is known
that the defense response based on papillae differs between
resistant and susceptible genotypes in timing of formation,
composition and size.67–69 Particularly, Chowdhury et al.68 showed
that the difference between effective and non-effective papillae
is due to the higher concentration of callose, cellulose and
arabinoxylan of the effective ones. The MLO protein has been
proposed to be a negative regulator of vesicle-associated and
actin-dependent defense pathways at the site of attempted PM
penetration.27 Furthermore, Miklis et al.35 proposed that, once
MLO proteins are under the control of the fungus, actin filaments
serve the purpose of supplying nutrients for the growing hyphae
through vesicular transport. The pathogen may be able to control
the transport of material to the cell wall, with the purpose of
changing the composition of the papillae and turning them from
effective to non-effective.
The formation of papillae is not the only process instigated

by the activity of MLO genes. To understand the effect of MLO
knockdown on other genes involved in plant–pathogen inter-
action, the expression of 13 genes known to be differentially
expressed after PM inoculation55–57,66,70–74 was analyzed. The
knockdown of MLO genes in the TLB4 line did not affect the
expression levels of the 13 considered genes as compared with
the EVB line in absence of PM infection. At 1 d.p.i, the response of
the considered genes was very limited in both the lines tested,
suggesting that the infection was not sufficient to trigger the
response. Conversely, some differences between TLB4 and EVB
lines were observed at 10 d.p.i. As a general trend, seven genes
(VvEDS1, VvPAD4, VvPR1, VvPR6, VvWRKY19, VvWRKY48 and
VvWRKY52) were upregulated in EVB, reflecting the reaction of
grapevine to PM. Conversely, only four genes (VvLOX1, VvNPF3.2,
VvWRKY19 and VvWRKY52) were activated in TLB4, suggesting that

Figure 3. Microscopic visualization of powdery mildew infection in the control line EVB (a, b) and in the resistant transgenic line TLB4 (c, d).
Microscopy images were taken with bright-field (a, c) and fluorescence (b, d) microscope at 3 days post inoculation (d.p.i.). One representative
picture is reported for each line and arrows indicate germinated conidia. Scale bars, 50 μm.
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the less severe PM infection was not sufficient to activate the
defense pathways with the same intensity of the susceptible
control EVB. Particularly, VvNPF3.2, a nitrite/nitrate transporter, is
known to be upregulated in grapevine infected with E. necator70

and it was downregulated in TLB4 at 10 d.p.i, indicating that only a
severe infection could elicit VvNPF3.2 upregulation in this line.
Three genes were upregulated at 10 d.p.i. in the control EVB but
not in TLB4, namely, VvPR1, VvPR6 and VvEDS1 (enhanced disease
susceptibility). The two pathogenesis-related genes are involved in
plant defense and are known to be upregulated in PM-infected

grapevine leaves pretreated with a salicylic acid (SA) analog,57

whereas VvEDS1 is a grapevine defense gene involved in the SA
pathway,56 a plant growth regulator that activates pathogenesis-
related genes and induces disease resistance.71 This may indicate
that only a severe E. necator infection triggers the plant defense

Figure 4. Gene expression of four grapevine MLO genes in the mlo lines TLB1, 2, 3, 4, 5 and 6, and in the control line EVB, following inoculation
with E. necator. Expression of VvMLO6 (a), VvMLO7 (b), VvMLO11 (c) and VvMLO13 (d) was analyzed before (0 d.p.i.; light gray), 1 (dark gray) and
10 (white) days post inoculation. The mean scores of five to nine plants pooled from the two experiments are reported for each line. Error bars
show s.e.m. For each time point, symbols highlight significant differences respect to the control EVB, according to Tukey or Games–Howell
post hoc test (P= 0.05): *for 0 d.p.i.,+ for 1 d.p.i. and # for 10 d.p.i.

Table 2. Relative level of expression (RE%)a of VvMLO6, 7, 11 and 13 in
transgenic lines TBL1 to 7

VvMLO6 VvMLO7 VvMLO11 VvMLO13

TLB1 67 72 25** 49**
TLB2 79 94 40** 156
TLB3 71* 93 27** 69
TLB4 38** 49** 34** 33**
TLB5 35** 55** 50** 88
TLB6 42** 53** 55** 45**
TLB7 83 85 51 57

*, **indicates statistically significant difference at P= 0.05 and P= 0.01,
respectively, according to the Tukey post hoc test. aEach RE% value is the
average of time points 0, 1 and 10 d.p.i. and of two experiments. RE%=
(RE of mlo line/RE of control EVB) × 100.

Figure 5. Relative expression of 13 grapevine genes at three time
points in the control line EVB and in the resistant line TLB4. The
color scale indicates the expression values relative to the control
EVB at 0 d.p.i, used as reference for data normalization. The asterisks
highlight statistically significant differences according to Fisher
post hoc test. One and two asterisks indicate significance at
P= 0.05 and P= 0.01, respectively. The image was prepared with
the Multiexperiment Viewer software with the Log2 of relative
expression data.
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depending on SA. However, the expression profiles observed
in this two lines need to be confirmed by further gene expres-
sion studies that comprise more transgenic control and
knockdown lines.
The knockout of MLO genes increased susceptibility to other

pathogens in barley75,76 and A. thaliana.21 Not surprisingly, the
infection with P. viticola, an obligate biotroph fungus such as
E. necator, revealed that the knockdown of MLO genes did
not change the susceptibility of grapevine to downy mildew,
supporting the conclusion that MLOs S-genes are specific for
E. necator and are not involved in the plant interaction with
P. viticola.
This work provides crucial information that can be used in

breeding grapevine varieties resistant to E. necator. The tagging
via genome editing of the MLO genes identified in this paper
should result in knockout mutants highly resistant to PM.
Alternatively, the search in V. vinifera and in wild species of non-
functional MLO alleles should contribute to the creation of durable
resistance.
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